用“卤豆腐块”解决教学难题

■邻水县鼎屏小学 谭章川

《教育导报》
2023年第23期(总第3788期) 导报三版

俗话说“几何几何,老师难教、学生难学”,在小学数学平面图形和立体图形的教学中,学生对于公式的理解、运用是难点。教师往往十八般武艺样样使出,学生就是不买账,出现讲一题会一题,变一下条件和类型,就不知所云、不会变通的情况。教学完长方体和正方体的表面积和体积计算后,学生遇到一道变式题:“在一个长10厘米、宽6厘米、高8厘米的长方体里挖掉一个棱长1 cm的小正方体,剩下部分的表面积和体积是多少?”学生的答题情况不尽人意。

究其原因,学生思维力局限、空间想象力不强、计算方法繁琐等导致了教学效果不好。通过分析,我认为教师的教学存在问题:一是重对概念、公式的引导,不重与生活的联系;二是教具的选用没有考虑学生的实际需求;三是对平面图形和立体图形的关键点没有打通。通过分析和反思,必须将此知识点进行思维的重建和方法的重构。

◆从小木块、豆腐、魔芋找起

一开始,我尝试用1立方厘米的小木块堆成长方体进行演示,由于小木块每个面的颜色都一样,学生对表面积的理解也不直观。然后,我用彩色粉笔在每个面涂上颜色,再拿下来,此时学生一下子明白了表面积减少了3个面,但是对于增加的3个面还是理解不了。我思考,有没有什么教具能够让学生一下子看到减少的面和增加的面呢?这时,我想到用豆腐现场切,学生是否能理解呢?

回到家,我迫不及待拿出刀子开始切豆腐,当我切下第一块时,一下就感觉到了豆腐的局限,它和小木块一样,依然看不出来哪些是增加的面,哪些是减少的面,而且豆腐容易碎。后来,我又用魔芋块试,切出来的图形不标准,还容易伤着手。

难道没有一个合适的教具能够帮助学生理解吗?办公室的老师也来出谋划策,有人说用魔方,但魔方中间是卡在一起的,不便于操作,同时演示的范围也有限。我决定到超市和菜市场去找一找灵感。当我逛到了一个卖卤菜的摊位,看到切下来的卤豆腐块有一面颜色不同,马上意识到“卤豆腐块”能解决前面遇到的所有问题。于是,我立即买了几块进行实验,果然达到了我想要的效果。

◆切“卤豆腐块”的教学过程

我把卤豆腐块拿到教室,孩子们一脸茫然,不知道这节课究竟要做什么。我不紧不慢演示起来——

首先,在顶点处切一小块,让孩子们观察剩下部分的表面积是增加了还是减少了。孩子们一眼就看出了新增的三个面颜色不一样,这三个面可以和原来的抵消,一下子就明白了在顶点处切一小块表面积不会改变。孩子们的兴趣也随之增加了,主动提出想知道在不同的位置切下来后,表面积的变化。

接着,展开切割。在棱上切一小块,减少了两个面,新增了四个面,抵消以后增加了两个面。然后在面上挖一小块,减少了一个面,新增了5个面,抵消后增加了4个面。学到这里,孩子们的兴趣还很高,我继续引导孩子们探究在棱上切完整个一长条,表面积减少切下部分的左右两个面;在面的中间从一个面切至另一个面,表面积增加四个面,减少两个面……得出结论:切一刀增加两个面,反之两块合起来,减少两个面。一节课下来,孩子们感受到了卤豆腐块的神奇,对于长方体切割、拼合后的表面积变化有了全方位的认识,知识容量随之扩大,学习兴趣提高,思维得到了极大的提升。

最后,探寻平面与立体的关系。展示结束后,我出示不规则长方形周长计算题,学生算完对比这两个知识点,发现:长方体和长方形之间无论是思维方法还是知识结构以及解题技巧上都存在着很多相似的地方,有着千丝万缕的联系。在说一说环节,孩子们找到了具体的相通之处,打通了平面图形与立体图形的关节。

◆打通生活与数学的关系

通过“卤豆腐块”的教学案例,我发现有以下效果:

学生对知识理解更加透彻了。孩子们经历了实际操作过程,对于长方体切割后表面积的变化有了清晰认识,进一步了解了不同切法带来的不同变化,更是学会用全局的眼光看事情,构建了知识的体系。

学生对学习兴趣更加浓厚了。课后,我问了孩子们的感受,他们普遍觉得数学课就像玩一样,可以自己动手、自己探究,学起来有意思。数学原来不那么难,看似复杂的问题也可以变得很简单,对数学的兴趣也大大提高了。

学生对生活知识更加关注了。也有孩子表示,原来常常吃的卤豆腐块里面还蕴藏着这么多的数学知识,以此类推,生活中的种种实物都可以为学习所用,以后要关注生活与学习的联系,打通生活与数学的关系。

学生的学习迁移能力更强了。在六年级的圆柱、圆锥的学习过程中,孩子们自发带来了可以切割的圆柱:白萝卜、胡萝卜、莴笋头……他们自己探究出了横切圆柱一次会增加两个底面,纵切圆柱一次会增加两个长方形,从圆锥的顶点处沿着高纵切下来,会增加两个等腰三角形,横切圆锥增加的是两个圆面,但是在不同的位置下刀,切下来的面的大小不一样等等。

教师对教学研究更加多元了。这次教学把我们研究教学的思维带向了多元。我们不再局限于书本、课件、办公室,而是从知识的本质出发,从生活世界进行研究,让教学符合学生的实际需求。

“教学有法、教无定法”,在平面图形和立体图形的教学中,要让学生感受到学习不是困难的事情,是有趣而有用的事情,才能建构知识网络,化难为易、学以致用,为后续学习打下坚实的基础。

(点击大图下载版面PDF)
© 四川省教育融媒体中心版权所有